Butterworth Lowpass Filter
Theory
The magnitude-squared response of an analog lowpass Butterworth filter is given by
$$
|H_a(j\Omega) |^2 = \frac{1}{1+(\Omega/\Omega_c)^{2N}}
$$
Passband ripple: $\delta_s$
Stopband ripple: $\delta_s$
$$
|H_a(j\Omega_p) |^2 = \frac{1}{1+(\Omega_p/\Omega_c)^{2N}} = (1-\delta_p)^2 = \frac{1}{1+\epsilon^2}
$$
$$
|H_a(j\Omega_s) |^2 = \frac{1}{1+(\Omega_s/\Omega_c)^{2N}} = \delta_s^2 = \frac{1}{A^2}
$$
Solving above
$$
N = \frac{1}{2} \frac{log{10}[(A^2-1)/\epsilon^2]}{log{10}(\Omega_s/\Omega_p)}
$$
Example
Passband edge frequency : $\Omega_p = 1$
Stopband edge frequency : $\Omega_s = 2.56$
Passband ripple: $\delta_p = 0.01$
Stopband ripple: $\delta_s = 0.005$
calculating $\epsilon$ and $A$
$$
(1-\delta_p)^2 = \frac{1}{1+\epsilon^2}
$$
$$
\delta_s^2 = \frac{1}{A^2}
$$
$\epsilon = 0.1425$ and $A = 200$ , Then calculating N
$$
N = \frac{1}{2} \frac{log{10}[(A^2-1)/\epsilon^2]}{log{10}(\Omega_s/\Omega_p)} = 7.7092
$$
$N$ should be an integer, so $N = 8$
Then calculating $\Omega_c$
$$
(\Omega_p/\Omega_c)^{2N} = \epsilon^2
$$
or
$$
\frac{1}{1+(\Omega_s/\Omega_c)^{2N}} = \delta_s^2
$$
It can gives the minimum of $\Omega_c = 1.2785 $ and maximum of $\Omega_c = 1.3201$
Here shows the diffrent $\Omega_c $ of the magnitude response